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A simple view of the spherical wave in dynamical theory
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Abstract

The results of the Kato spherical-wave approach to the
dynamical theory for perfect crystals are obtained by a simple
and straightforward method based on the multiple-scattering
expansion.

1. Introduction

The present paper is mainly of pedagogical interest, since the
®nal formulae are those of the spherical-wave theory of Kato
(1961) in the case of perfect crystals. There are two usual
methods to derive the intensity distribution of the spherical
wave: the ®rst one, formulated by Kato (1961), uses the Fourier
expansion of the spherical wave in plane waves and the usual
results of the plane-wave dynamical theory; the second one is
based on the solution of the Takagi equations (Takagi, 1962,
1969) using the concept of the Riemann function for second-
order differential equations (Authier & Simon, 1968; Takagi,
1969). The method of the present paper is independent of the
plane-wave theory, is free of mathematical complexity and has
a clear physical meaning; this method is based on the
phenomenon of multiple scattering from the incident direction
to the Bragg direction and vice versa. Starting from the Takagi±
Taupin equations written as integral equations, we obtain
iteratively the successive terms of the multiple-scattering
expansion. The sum of terms of scattering order 0, 2, 4, . . .
represents the amplitude of the forward wave, including the
wave refracted without Bragg re¯ection (the term of order 0);
the sum of terms of scattering order 1, 3, 5, . . . represents the
amplitude of the Bragg wave. This iteration process is carried
out in the Laue case and in the Bragg case for a thick crystal
with a planar surface.

Let us ®rst de®ne our utilization of the Takagi theory.
According to Takagi (1962), in the case of a Bragg re¯ection of
scattering vector h, the incident wave and the wave in the
crystal are presupposed to be of the following form:

 inc � exp�iko � r�Dinc�r�
and

 cryst � exp�iKo � r�Do�r� � exp�iKh � r�Dh�r�;
where jkoj � k � 2�=� and Kh � Ko � h; the modulated
amplitudes (the D functions) are supposed to have slow
variations, as compared to the exponential terms. There is
some arbitrariness in the choice of the vectors ko and Ko. We
choose ko as the wavevector of the incident wave in vacuum
such that the Bragg condition is exactly ful®lled in the crystal;
in the case of an incident plane wave, the departure from the
exact Bragg position would then appear in Dinc(r). We choose
Ko as the corresponding refracted wavevector. In the case of
an absorbing crystal, Ko (and Kh) has an imaginary part
perpendicular to the crystal surface; the real parts of Ko and Kh

have the same length; the amplitudes Do(r) and Dh(r), using
oblique coordinates (so, sh) along the directions of the real
parts of Ko and Kh, are then shown to satisfy the partial
differential equations

@Do=@so � i��=���ÿhDh�so; sh� �1a�
@Do=@sh � i��=���hDo�so; sh�; �1b�

in which �h and �ÿh are the Fourier components of the crystal
susceptibility. The incident wave must be taken into account in
the boundary conditions. This can be performed by means of
integral equations, as explained by Bremer (1984). The inte-
gral-equations method is particularly well suited to the calcu-
lation of the multiple-scattering expansion in the case of the
spherical wave de®ned by Kato, corresponding to an incident
wave limited by an in®nitely narrow slit on the entrance
surface of the crystal. The wave function of the incident wave is
then exp�iko � r���sh� and the wave function of the wave
refracted in the crystal without Bragg re¯ection is
exp�iKo � r���sh�. In these expressions, �(sh) is a Dirac distri-
bution which represents, as is usual in optics, a point source
located on the entrance surface of the crystal. The experi-
mental set-up corresponds to a narrow slit with a spatially
incoherent illumination. The different points of the slit
produce identical but laterally displaced intensity pro®les in
the recording plane; the maximum displacement is equal to the
width of the slit and may be neglected if the slit is suf®ciently
narrow.

2. Multiple-scattering expansion in the Laue case

Let us choose as the origin of the coordinates the point of
incidence of the in®nitely narrow incident wave on the crystal
(see Fig. 1). As pointed out at the end of the previous section,
the modulated amplitude of the wave refracted in the crystal
without Bragg re¯ection is taken as Do�so; sh� � ��sh�. Equa-
tions (1a) and (1b) can then be written as the integral equa-
tions

Do�so; sh� � ��sh� � i��=���ÿh

Rso

0

d s0o Dh�s0o; sh� �2a�

Dh�so; sh� � i��=���h

Rsh

0

d s0h Do�so; s0h�: �2b�

The amplitudes Do�so; sh� and Dh�so; sh� are obviously equal to
zero outside the region of in¯uence that corresponds to posi-
tive values of so and sh; in fact, in equations (2a) and (2b), it is
supposed that so; sh > 0. From these integral equations, it is
easy to calculate the multiple-scattering expansion in which the
terms of even order belong to Do(so, sh) and the terms of odd
order belong to Dh(so, sh). The zero-order term of this
expansion is present in equation (2a) as D�0�o � ��sh�; the ®rst-
order term, obtained by replacing Do�so; s0h� by ��s0h� in (2b), is
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D
�1�
h � i��=���h; the second-order term obtained by replacing

Dh�s0o; sh� by D
�1�
h in the integral of (2a) is

D�2�o � ÿ��=��2�h�ÿhso; the successive terms, up to any order,
are obtained iteratively by the following sequence of integra-
tions:

D
�2n�1�
h �so; sh� � i��=���h

Rsh

0

d s0h D�2n�
o �so; s0h�

D�2n�2�
o �so; sh� � i��=���ÿh

Rso

0

d s0o D
�2n�1�
h �s0o; sh�:

The general terms thus obtained are

D
�2n�1�
h �so; sh� � i��=���2n�1��h�ÿ�n��hsh�n��ÿhso�n=n!n!

D�2n�2�
o �so; sh� � ÿ ��=���2n�2��h�ÿ�n��ÿhso�n�1

� ��hsh�n=�n� 1�!n!

It is convenient to de®ne the interaction length
L � ��=����h�ÿh�ÿ1=2. We can then write

Do�so; sh� � ��sh� ÿ Lÿ1�so=sh�1=2

�P1
n�0

f�ÿ�n��sosh�1=2=L�2n�1=�n� 1�!n!g

Dh�so; sh� � i��=���h

P1
n�0

�ÿsosh=L2�n=n!n!;

in which, the well known formulae ®rst obtained by Kato
(1961),

Do�so; sh� � ��sh� ÿ Lÿ2so2 J1�X�=X

Dh�so; sh� � i��=���hJ0�X�
with

X � 2�sosh�1=2=L;

can be recognized, by recalling the familiar series expansion of
Bessel functions. In the case of an absorbing crystal, L is a
complex length since (�h�ÿh) is in general complex and we
actually obtain Bessel functions with a complex argument.

3. Multiple-scattering expansion in the Bragg case

We consider the re¯ection of a spherical wave by an in®nitely
thick crystal in the Bragg case. In contrast to the Laue case, it is
necessary to take into account the asymmetry factor
 � jhj=o, in which o;h � cos�Ko;h; n�, n indicating the
inward direction normal to the crystal surface. As shown in
Fig. 2, the region of in¯uence is (so > 0; sh > 0; so ÿ sh > 0).
The integral equations are

Do�so; sh� � ��sh� � i��=���ÿh

Rso

sh

ds0o Dh�s0o; sh� �3a�

Dh�so; sh� � i��=���h

Rsh

0

ds0h Do�so; s0h�: �3b�

The integration limits are such that �Do�so; sh� ÿ ��sh�� � 0 for
so � sh (the crystal surface). The zero-order term of the
multiple-scattering expansion is present in equation (3a) as
D�0�o � ��sh�; the ®rst-order term obtained by replacing
Do�so; s0h� by ��s0h� in (3b) is D

�1�
h � i��=���h; the second-order

term is D�2�o � ÿ��=��2�h�ÿh�so ÿ sh�; the successive terms,
up to any order, are obtained iteratively by the following
sequence of integrations:

D
�2n�1�
h �so; sh� � i��=���h

Rsh

0

ds0h D�2n�
o �so; s0h�

D�2n�2�
o �so; sh� � i��=���ÿh

Rso

sh

ds0o D
�2n�1�
h �s0o; sh�;

Fig. 2. The spherical-wave geometry in the Bragg case for a thick
crystal. The integration of formula (3a) is carried out along A0M,
where the point A0 is on the crystal surface; the integration of
formula (3b) is carried out along BM.

Fig. 1. The spherical-wave geometry in the Laue case. The oblique
coordinates of the point M are so � AM and sh � BM. The
integrations of formulae (2a) and (2b) are carried out along AM and
BM, respectively.
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which are a little more complicated than in the Laue case. The
general terms, for n � 1; 2; . . . ; are

D
�2n�1�
h �so; sh� � i��=���2n�1��h�ÿ�h�ÿh�n��sosh�n=n!n!

ÿ snÿ1
o sn�1

h =�nÿ 1�!�n� 1�!�
D�2n�2�

o �so; sh� � ��=���2n�2��ÿ�h�ÿh�n�1

� �so ÿ sh��sosh�n=�n� 1�!n!:

Using again the series expansion of Bessel functions, we
obtain, again with X � 2�sosh�1=2=L,

Do�so; sh� � ��sh� ÿ Lÿ2�so ÿ sh�2 J1�X�=X

Dh�so; sh� � i��=���h�J0�X� � �sh=so�J2�X��;

which are similar to formulae obtained by Uragami (1969) and
by Afanas'ev & Kohn (1971).

The author thanks Professor A. Authier and Professor M.
Schlenker for encouragement in writing the present short
communication.
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